Read Time:10 Minute, 49 Second

  • Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ameur, A., Kloosterman, W. P. & Hestand, M. S. Single-molecule sequencing: towards clinical applications. Trends Biotechnol. 37, 72–85 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Smith, L. M. et al. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bogaert, A., Fernandez, E. & Gevaert, K. N-terminal proteoforms in human disease. Trends Biochem. Sci. 45, 308–320 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tolsma, T. O. & Hansen, J. C. Post-translational modifications and chromatin dynamics. Essays Biochem. 63, 89–96 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 4, 674–695 (2020).

    Article 
    CAS 

    Google Scholar
     

  • MacCoss, M. J., Alfaro, J., Wanunu, M., Faivre, D. A. & Slavov, N. Sampling the proteome by emerging single-molecule and mass-spectrometry methods. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.00530 (2022).

  • Slavov, N. Single-cell protein analysis by mass spectrometry. Curr. Opin. Chem. Biol. 60, 1–9 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. J. Proteome Res. 17, 2565–2571 (2018).

    Article 

    Google Scholar
     

  • Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kennedy, E., Dong, Z., Tennant, C. & Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).

    Article 
    CAS 

    Google Scholar
     

  • van Ginkel, J. et al. Single-molecule peptide fingerprinting. Proc. Natl Acad. Sci. 115, 3338–3343 (2018).

    Article 

    Google Scholar
     

  • Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    Article 

    Google Scholar
     

  • Stefureac, R., Long, Y.-t, Kraatz, H.-B., Howard, P. & Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Movileanu, L. Squeezing a single polypeptide through a nanopore. Soft Matter 4, 925–931 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rosen, C. B., Bayley, H. & Rodriguez-Larrea, D. Free-energy landscapes of membrane co-translocational protein unfolding. Commun. Biol. 3, 160 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Payet, L. et al. Thermal unfolding of proteins probed at the single molecule level using nanopores. Anal. Chem. 84, 4071–4076 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Soni, N., Freundlich, N., Ohayon, S., Huttner, D. & Meller, A. Single-file translocation dynamics of SDS-denatured, whole proteins through sub-5 nm solid-state nanopores. ACS Nano 16, 11405–11414 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Pastoriza-Gallego, M. et al. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc. 133, 2923–2931 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Merstorf, C. et al. Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording. ACS Chem. Biol. 7, 652–658 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pastoriza-Gallego, M. et al. Evidence of unfolded protein translocation through a protein nanopore. ACS Nano 8, 11350–11360 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cressiot, B. et al. Protein transport through a narrow solid-state nanopore at high voltage: experiments and theory. ACS Nano 6, 6236–6243 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2, 473–477 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an alpha-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brinkerhoff, H., Kang Albert, S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, X., Alibakhshi, M. A. & Wanunu, M. One-pot species release and nanopore detection in a voltage-stable lipid bilayer platform. Nano Lett. 19, 9145–9153 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, L. et al. Stable polymer bilayers for protein channel recordings at high guanidinium chloride concentrations. Biophys. J. 120, 1537–1541 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC Press, 2016).

  • Perkins, S. J. Protein volumes and hydration effects. Eur. J. Biochem. 157, 169–180 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. P., Topping, T. B., Cover, W. H. & Randall, L. L. Retardation of folding as a possible means of suppression of a mutation in the leader sequence of an exported protein. J. Biol. Chem. 263, 14790–14793 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Sheshadri, S., Lingaraju, G. M. & Varadarajan, R. Denaturant mediated unfolding of both native and molten globule states of maltose binding protein are accompanied by large deltaCp’s. Protein Sci. 8, 1689–1695 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Nakane, J., Akeson, M. & Marziali, A. Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis 23, 2592–2601 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Meller, A. & Branton, D. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23, 2583–2591 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Hornblower, B. et al. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 4, 315–317 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Henrickson, S. E., Misakian, M., Robertson, B. & Kasianowicz, J. J. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 85, 3057–3060 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Mathé, J., Aksimentiev, A., Nelson, D. R., Schulten, K. & Meller, A. Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proc. Natl Acad. Sci. USA 102, 12377–12382 (2005).

    Article 

    Google Scholar
     

  • Yang, G. et al. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl Acad. Sci. USA 97, 139 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Doina, P. & Whye, T. Y. (eds.). Soft-DTW: a differentiable loss function for time-series. Proceedings of the 34th International Conference on Machine Learning Vol. 70, pp. 894–903 (PMLR, 2017).

  • Larkin, J. et al. High-bandwidth protein analysis using solid-state nanopores. Biophys. J. 106, 696–704 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ling, D. Y. & Ling, X. S. On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger’s first-passage-time theory. J. Phys. Condens. Matter 25, 375102 (2013).

    Article 

    Google Scholar
     

  • Li, J. & Talaga, D. S. The distribution of DNA translocation times in solid-state nanopores. J. Phys. Condens. Matter 22, 454129 (2010).

    Article 

    Google Scholar
     

  • Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pavlenok, M., Yu, L., Herrmann, D., Wanunu, M. & Niederweis, M. Control of subunit stoichiometry in single-chain MspA nanopores. Biophys. J. https://doi.org/10.1016/j.bpj.2022.01.022 (2022).

    Article 

    Google Scholar
     

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Versloot, R. C. A., Straathof, S. A. P., Stouwie, G., Tadema, M. J. & Maglia, G. β-Barrel nanopores with an acidic–aromatic sensing region identify proteinogenic peptides at low pH. ACS Nano https://doi.org/10.1021/acsnano.1c11455 (2022).

    Article 

    Google Scholar
     

  • Versloot, R. C. A. et al. Quantification of protein glycosylation using nanopores. Nano Lett. 22, 5357–5364 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, G. et al. PlyAB nanopores detect single amino acid differences in folded haemoglobin from blood. Angew. Chem. Int. Ed. 61, e202206227 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Noakes, M. T. et al. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat. Biotechnol. 37, 651–656 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Muthukumar, M. Polymer translocation through a hole. J. Chem. Phys. 111, 10371–10374 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Ammenti, A., Cecconi, F., Marini Bettolo Marconi, U. & Vulpiani, A. A statistical model for translocation of structured polypeptide chains through nanopores. J. Phys. Chem. B 113, 10348–10356 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Duan, X. & Quiocho, F. A. Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. Biochemistry 41, 706–712 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Robertson, A. D. & Jensen, J. H. Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct. Funct. Bioinf. 61, 704–721 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tavenard, R. et al. Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21, 1–6 (2020).


    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).


    Google Scholar
     

  • Schreiber, J. & Karplus, K. Analysis of nanopore data using hidden Markov models. Bioinformatics 31, 1897–1903 (2015).

    Article 
    CAS 

    Google Scholar
     


  • Source link

    Happy
    Happy
    0 %
    Sad
    Sad
    0 %
    Excited
    Excited
    0 %
    Sleepy
    Sleepy
    0 %
    Angry
    Angry
    0 %
    Surprise
    Surprise
    0 %
    Previous post The economic downturn is hurting the creator economy, one of the most-hyped sectors of the past decade, in particular since its middle class hasn't yet emerged (Alex Kantrowitz/Big Technology) – The Knowledge Pal
    Next post How Telegram, TikTok, Instagram, Facebook, and Twitter were used to boost election fraud claims in Brazil before riots hit congress and supreme court buildings (Elizabeth Dwoskin/Washington Post) – The Knowledge Pal