Read Time:9 Minute, 19 Second

  • Schoen, I., Pruitt, B. L. & Vogel, V. The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43, 589–618 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mammoto, T., Mammoto, A. & Ingber, D. E. Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27–61 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Trylinski, M. & Schweisguth, F. Activation of Arp2/3 by WASp is essential for the endocytosis of δ only during cytokinesis in Drosophila. Cell Rep. 28, 1–10 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bertolio, R. et al. Sterol regulatory element binding protein one couples mechanical cues and lipid metabolism. Nat. Commun. 10, 1326 (2019).

    Article 

    Google Scholar
     

  • Van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).

    Article 

    Google Scholar
     

  • Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Das, D. K. et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc. Natl Acad. Sci. USA 112, 1517–1522 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, D. et al. Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability. Proc. Natl Acad. Sci. USA 104, 9278–9283 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bornschlögl, T., Christof, J., Gebhardt, M. & Rief, M. Designing the folding mechanics of coiled coils. ChemPhysChem 10, 2800–2804 (2009).

    Article 

    Google Scholar
     

  • Ng, S. P. et al. Designing an extracellular matrix protein with enhanced mechanical stability. Proc. Natl Acad. Sci. USA 104, 9633–9637 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sadler, D. P. et al. Identification of a mechanical rheostat in the hydrophobic core of protein L. J. Mol. Biol. 393, 237–248 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y., Yoo, T., Zhuang, S. & Li, H. Protein–protein interaction regulates proteins’ mechanical stability. J. Mol. Biol. 378, 1132–1141 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y., Yoo, T. & Li, H. Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins. Proc. Natl Acad. Sci. USA 105, 11152–11157 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hughes, J. H. & Kumar, S. Synthetic mechanobiology: engineering cellular force generation and signaling. Curr. Opin. Biotechnol. 40, 82–89 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl. Acad. Sci. USA 115, 992–997 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. N. et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci. Transl. Med. 9, eaan2966 (2017).

    Article 

    Google Scholar
     

  • Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and Notch signaling. Science 340, 991–994 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chowdhury, F. et al. Defining single molecular forces required for Notch activation using Nano Yoyo. Nano Lett. 16, 1–20 (2016).

    Article 

    Google Scholar
     

  • Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Verdorfer, T. & Gaub, H. E. Ligand binding stabilizes cellulosomal cohesins as revealed by AFM-based single-molecule force spectroscopy. Sci. Rep. 8, 9634 (2018).

    Article 

    Google Scholar
     

  • Tiyanont, K. et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure 19, 546–554 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Aste-Amézaga, M. et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5, e9094 (2010).

    Article 

    Google Scholar
     

  • Fortini, M. E. & Bilder, D. Endocytic regulation of Notch signaling. Curr. Opin. Genet. Dev. 19, 323–328 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Schwesinger, F. et al. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA 97, 9972–9977 (2000).

  • Varnum-Finney, B. et al. Immobilization of Notch ligand, δ-1, is required for induction of Notch signaling. J. Cell Sci. 113 Pt 23, 4313–4318 (2000).

    Article 
    CAS 

    Google Scholar
     

  • De Odrowa̧z Piramowicz, M., Czuba, P., Targosz, M., Burda, K. & Szymoński, M. Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM. Acta Biochim. Polym. 53, 93–100 (2006).

    Article 

    Google Scholar
     

  • Weisel, J. W., Shuman, H. & Litvinov, R. I. Protein–protein unbinding induced by force: single-molecule studies. Curr. Opin. Struct. Biol. 13, 227–235 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Falk, R. et al. Generation of anti-Notch antibodies and their application in blocking Notch signalling in neural stem cells. Methods 58, 69–78 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chopra, M. L. et al. Force generation via β-cardiac myosin, titin, and α-actinin drives cardiac sarcomere assembly from cell-matrix adhesions. Dev. Cell 44, 87–96 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sakar, M. S. et al. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7, 11036 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kabadi, A. M. et al. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth. Biol. 4, 689–699 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Balcioglu, H. E., van Hoorn, H., Donato, D. M., Schmidt, T. & Danen, E. H. J. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions. J. Cell Sci. 128, 1316–1326 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Marszalek, P. E. & Fernandez, J. M. Point mutations alter the mechanical stability of immunoglobulin modules. Nat. Struct. Biol. 7, 1117–1120 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z., Yu, Z., Cai, Y., Du, R. & Cai, L. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun. Biol. 3, 116 (2020).

    Article 

    Google Scholar
     

  • Gordon, W. R. et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood 113, 4381–4390 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rand, M. D. et al. Calcium depletion dissociates and activates heterodimeric Notch receptors. Mol. Cell. Biol. 20, 1825–1835 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Frith, J. E. et al. Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling. Nat. Commun. 9, 257 (2018).

    Article 

    Google Scholar
     

  • Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Greber, D. & Fussenegger, M. An engineered mammalian band-pass network. Nucleic Acids Res. 38, e174 (2010).

    Article 

    Google Scholar
     

  • Fridy, P. C. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11, 1253–1260 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Langridge, P. D. & Struhl, G. Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383–1396 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Guo, B., McMillan, B. J. & Blacklow, S. C. Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr. Opin. Struct. Biol. 41, 38–45 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Messa, M. et al. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3, e03311 (2014).

    Article 

    Google Scholar
     

  • Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Serwas, D. et al. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography. Dev. Cell 57, 1132–1145 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seib, E. & Klein, T. The role of ligand endocytosis in Notch signalling. Biol. Cell 113, 401–418 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McMillan, B. J. et al. A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. Mol. Cell 57, 912–924 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dengl, S. et al. Hapten-directed spontaneous disulfide shuffling: a universal technology for site-directed covalent coupling of payloads to antibodies. FASEB J. 29, 1763–1779 (2015).

    Article 
    CAS 

    Google Scholar
     

  • McMahan, J. B., Ngo, J. T. A Genetically encodable and chemically disruptable system for synthetic post-translational modification dependent signaling. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493928 (2022).

  • Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 12, 22 (2012).


    Google Scholar
     

  • Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698–710 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sun, P., Enslen, H., Myung, P. S. & Maurer, R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Constructing modular and universal single molecule tension sensor using protein G to study mechano-sensitive receptors. Sci. Rep. 6, 21584 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. K., Wang, Y. M., Huang, L. S. & Lin, S. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 38, 446–461 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, K. C. & Thomas, W. E. How do we know when single-molecule force spectroscopy really tests single bonds? Biophys. J. 114, 2032–2039 (2018).

    Article 
    CAS 

    Google Scholar
     


  • Source link

    Happy
    Happy
    0 %
    Sad
    Sad
    0 %
    Excited
    Excited
    0 %
    Sleepy
    Sleepy
    0 %
    Angry
    Angry
    0 %
    Surprise
    Surprise
    0 %
    Previous post Protect Your Privacy: How to Remove Your Home’s Photos from Zillow, Redfin, and Realtor.com – The Knowledge Pal
    Next post What is today’s Wordle word? January 16 hints and answer — The Knowledge Pal