Read Time:7 Minute, 9 Second

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat. Commun. 12, 1034 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, G.-H. et al. PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Res. 49, W499–W504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Chen, J., Tsai, S. Q. & Cheng, Y. Easy-Prime: a machine learning–based prime editor design tool. Genome Biol. 22, 235 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nielsen, S., Yuzenkova, Y. & Zenkin, N. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340, 1577–1580 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Z., Herrera-Carrillo, E. & Berkhout, B. Delineation of the exact transcription termination signal for type 3 polymerase III. Mol. Ther. Nucleic Acids 10, 36–44 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bill, C. A., Duran, W. A., Miselis, N. R. & Nickoloff, J. A. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells: competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 149, 1935–1943 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 4768–4777 (Curran Associates Inc., 2017).

  • Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3319–3328 (PMLR, 2017).

  • Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nair, N. et al. Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood 123, 3195–3199 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

  • Kim, H. K. et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14, 153–159 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Kim, N. et al. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280 (2015).

    Article 

    Google Scholar
     

  • Böck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

    Article 

    Google Scholar
     

  • Jensen, K. T. et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett. 591, 1892–1901 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Article 

    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article 

    Google Scholar
     

  • Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article 

    Google Scholar
     

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schep, R. et al. Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Mol. Cell 81, 2216–2230.e10 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2012).

    Article 

    Google Scholar
     

  • Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–D889 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Karabacak Calviello, A., Hirsekorn, A., Wurmus, R., Yusuf, D. & Ohler, U. Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling. Genome Biol. 20, 42 (2019).

    Article 

    Google Scholar
     

  • Lamb, K. N. et al. Discovery and characterization of a cellular potent positive allosteric modulator of the polycomb repressive complex 1 chromodomain, CBX7. Cell Chem. Biol. 26, 1365–1379.e22 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hattori, T. et al. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation. Proc. Natl Acad. Sci. USA 113, 2092–2097 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, B. T. et al. The UCSC Genome Browser database: 2022 update. Nucleic Acids Res. 50, D1115–D1122 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zerbino, D. R., Johnson, N., Juettemann, T., Wilder, S. P. & Flicek, P. WiggleTools: parallel processing of large collections of genome-wide datasets for visualization and statistical analysis. Bioinformatics 30, 1008–1009 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).


    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Krishnapuram, B. et al.) 785–794 (ACM, 2016).

  • Marquart, K. F. et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat. Commun. 12, 1–25 (2020).


    Google Scholar
     

  • Paszke, A. et al. Automatic differentiation in pytorch. In Proc. 31st Annual Conference on Neural Information Processing Systems:Advances in Neural Information Processing Systems 2017 (NIPS, 2017).

  • Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (eds Moschitti, A. et al.) 1724–1734 (Association for Computational Linguistics, 2014).

  • Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. Preprint at https://arxiv.org/abs/1412.3555 (2014).

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks 385 (Springer, 2012).

  • Luong, T., Pham, H. & Manning, C. D. Effective approaches to attention-based neural machine translation. In Proc. 2015 Conference on Empirical Methods in Natural Language Processing (eds Màrquez, L. et al.) 1412–1421 (Association for Computational Linguistics, 2015).

  • Vaswani, A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 6000–6010 (Curan Associates Inc., 2017).

  • Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at https://arxiv.org/abs/1607.06450 (2016).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).

  • Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).


    Google Scholar
     

  • Eggington, J. M., Greene, T. & Bass, B. L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2, 319 (2011).

    Article 

    Google Scholar
     


  • Source link

    Happy
    Happy
    0 %
    Sad
    Sad
    0 %
    Excited
    Excited
    0 %
    Sleepy
    Sleepy
    0 %
    Angry
    Angry
    0 %
    Surprise
    Surprise
    0 %
    Previous post Protect Your Privacy: How to Remove Your Home’s Photos from Zillow, Redfin, and Realtor.com – The Knowledge Pal
    Next post What is today’s Wordle word? January 16 hints and answer — The Knowledge Pal